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Abstract

Seismic airguns are commonly used in geophysical exploration.
More recently, they are also being used as an alternative to un-
derwater explosions for the shock testing of defence vessels.
The study of the dynamics of the bubble produced by a seismic
airgun is beneficial in understanding the resultant pressure field
and shockwave.

The Rayleigh–Plesset and Gilmore equations for modelling
spherical bubble dynamics are compared for the expansion of
an initially highly pressurised gas bubble. The relationship be-
tween initial gas pressure and both the first maximum bubble ra-
dius and the first period of oscillation are presented. The initial
gas pressure is non-dimensionalised against hydrostatic pres-
sure and studied over a range of 1 – 50. The separate contribu-
tions of presence of the airgun body, mass throttling, effective
viscosity and heat diffusion to the first maximum radius and pe-
riod are modelled and discussed. The effects of evaporation and
condensation at the bubble wall are also considered.

Introduction

The Royal Australian Navy is currently investigating the feasi-
bility and advantages of employing seismic airguns for shock
testing naval craft. Shock testing with seismic airguns, rather
than high explosives, is less expensive, safer, and more envi-
ronmentally friendly. To perform shock testing effectively, an
array of airguns must be used and the interactions between the
bubbles can alter the pressure fields produced. Several meth-
ods exist for calculating the interactions between bubbles in an
array [9, 14], but all rely on a basic understanding of the param-
eters affecting a single airgun bubble and the pressure field and
shockwave produced.

The Gilmore equation for bubble dynamics is commonly used
as the underlying basis for seismic airgun bubbles and under-
water explosions. Comparisons exist of this equation with other
bubble models, including the well known Rayleigh–Plesset
equation; however, they consider a bubble’s collapse from its
maximum radius rather than expansion from its minimum ra-
dius. In modelling seismic airgun bubbles it is more practical to
consider the initial bubble pressure and radius, rather than the
conditions at the first maximum. The present work compares
the Gilmore equation to the Rayleigh–Plesset equation to con-
firm the use of the Gilmore equation as the basic bubble model.

Several contributions have been made to improve the numeri-
cal modelling of individual seismic airgun bubbles by consider-
ing additional factors to the basic bubble dynamics. Ziolkowski
[17] used Gilmore’s equation and found a polytropic index of
1.13 gave good results for the first period of oscillation; this
value was also obtained by Dragoset [2] for a range of gun sizes.
Shulze–Gatterman [13] emphasised the effect of the actual air-
gun body on the period of oscillation. Safar [12] compared the
equation of a bubble to an electrical circuit and developed a
model for the rise time, amplitude of the initial pulse, and pe-
riod of the airgun. Johnston [7] and Dragoset [2] considered the

effect of the shuttle motion and choked flow rate on the cham-
ber pressure, with Dragoset allowing for the actual port size.
Ziolkowski [18] proposed that heat transfer occurs through the
latent heat released by evaporation and condensation at the bub-
ble wall. This concept is repeated by Langhammer and Landro
[8]. Laws et al. [9] consider mass transfer due to evaporation
and condensation, classical heat diffusion, flow throttling and
an ‘effective viscosity’ induced by the turbulent nature of the
bubble. It is claimed that this turbulent nature also has an am-
plifying effect on the heat transfer across the bubble wall. Li
et al [10] includes the effect of mass throttling (but not choked
flow) through ports, the airgun body, heat transfer and hydro-
static pressure changes as the bubble rises through the water.

There appears to be no work that considers all of these param-
eters together and provides values for coefficients with a sum-
mary of the impact of each parameter on the bubble behaviour.
The present work uses the Gilmore equation as the basic bub-
ble model and considers the individual effects of the presence
of the airgun body, mass throttling, effective viscosity, heat dif-
fusion and condensation and evaporation, providing a summary
of each contribution.

Comparison of Rayleigh–Plesset and Gilmore Equations

The Rayleigh–Plesset equation describes the motion of a spher-
ical bubble in an incompressible liquid [3]. When consid-
ering bubble velocities of an appreciable order of magnitude
compared with the speed of sound in water, compressibility of
the liquid cannot be ignored. The Gilmore equation includes
second-order compressibility terms, accounting for the loss of
bubble energy due to the radiated pressure waves [5]. Both
equations are commonly used to model bubble dynamics, with
the Gilmore equation often used in underwater explosion appli-
cations. The Rayleigh–Plesset equation is given by:
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The Gilmore equation is given by:
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R is the bubble radius,ρ is the water density,pv is the vapour
pressure,p∞ is the hydrostatic pressure,p0 is the initial non-
condensable gas pressure,R0 is the initial bubble radius,k is
the polytropic index, which varies between 1 (isothermal) and
1.4 (adiabatic) — taken as 1.4 in this work where required,S is
the surface tension,µ is the dynamic viscosity,H is the enthalpy
difference between the liquid at pressurep andp∞, andc∞ is the
speed of sound in water at an infinite distance from the bubble.
B andn are constants used to calculate the local speed of sound,
c, and enthalpy. Gilmore [5] givesB = 3000 atm andn = 7.
Overdots represent differentiation with respect to time.

Vokurka [15] compared these two equations for bubble collapse
and determined that for amplitudes(Rmax/Requilibrium) greater
than 2, the Gilmore equation produces superior results. The
first maximum radius as a function of the initial pressure for
expanding bubbles is shown in figure 1. The maximum radius
is non-dimensionalised with respect to the initial radius and the
initial pressure with respect to the hydrostatic water pressure.
The results start to diverge for pressure ratios greater than about
3. The Gilmore equation is considered to produce the more ac-
curate results due to the presence of the higher order terms. In
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Figure 1: First maximum radius as a function of initial pressure
predicted by Rayleigh–Plesset and Gilmore equations.

the study of bubble collapses, the collapse of a Gilmore bubble
is fractionally (1.005) [3] longer than the collapse of a Rayleigh
bubble. When modelling the bubble expansion and collapse,
it is found that a Gilmore bubble has a shorter period than the
Rayleigh bubble because a smaller maximum amplitude is pre-
dicted (figure 2). Due to the size of the airgun bubbles mod-
elled, it is also found that the surface tension and dynamic vis-
cosity terms are negligible in both solutions. For seismic air-
guns, the initial pressure is generally at least an order of magni-
tude greater than the hydrostatic pressure; therefore, while this
study is interesting, the overlap between the Rayleigh–Plesset
and Gilmore equations is insignificant in the study of airguns.
As the Gilmore equation is considered more accurate, all further
predictions will use this as the base model. The surface tension
term will be ignored. Dynamic viscosity is taken as 1×10−3

kg/ms as it is required when calculating the effective viscosity
and the thermal boundary layer.

Additional Aspects to the Gilmore Equation

It is well noted [9, 13, 18, 10] that while the Gilmore equation
models compressibility which leads to acoustic damping, addi-
tional damping parameters must also be present in the dynamics
of an airgun bubble. Typically, a real airgun bubble will have
lost its energy after only a few growth/collapse cycles. Predic-
tions with the Gilmore equation result in oscillations that persist
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Figure 2: Comparison of predicted temporal variation of bubble
radius from Rayleigh-Plesset and Gilmore equations for an ini-
tial pressure and radius of 100 bar and 0.01 m respectively.τRP
is the collapse time for the Rayleigh–Plesset bubble.

much longer. The additional factors identified here have been
modelled using the parameters of a scale model airgun; the ini-
tial bubble radius is taken as 0.014 m, the initial pressure is 100
bar and hydrostatic pressure is 1 bar. The numerical integration
is performed using a fourth order Runge–Kutta method. To in-
corporate mass throttling and temperature effects, the ideal gas
law pressure equation (5) is replaced by:

p=
mRGT

V
+ pv (7)

wherem is the bubble gas mass,RG is the gas constant,T is
the bubble temperature andV is the bubble volume. When the
gun is fired, the air expands through four ‘ports’ into the sur-
rounding water. Depending on the gun design, the air may also
pass through other internal constrictions before release. These
orifices throttle the flow rate and considering the pressure dif-
ferences involved, choked flow conditions can be assumed. The
mass flow function is [16]:
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wherep is limited to the sonic value,p∗G:
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A is the orifice area, in this model taken as 336.9 cm2, and
the subscriptG indicates the value inside the airgun chamber.
The mass throttling limits the initial maximum radius, subse-
quently reducing the first period and the maximum bubble pres-
sure achieved after the first collapse (figure 3).

The presence of the airgun body at the bubble centre has been
identified as a contributing factor to the bubble dynamics [13].
The volume of air in the bubble is:

V =
4
3

πR3−VAG (10)

whereVAG is the volume of the airgun body, in this model taken
as 6.54×10−5 m3. This volume is then used to calculate the
bubble pressure, which in effect is increased at the maximum
bubble radius as compared with the bubble pressure where no
body is present. The reduced pressure difference between the
bubble and the water reduces the intensity and velocities of the
collapse; therefore, the first bubble minimum is larger, and the
following oscillations less intense (figure 3).
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Figure 3: Effect on bubble radius of including different aspects to the Gilmore equation.

Laws et al. [9] include an effective viscosity,µe f f , to account
for turbulent motion at the bubble wall which occurs at large
Reynolds numbers. This increases the heat transfer across the
bubble wall and the viscous damping of the bubble oscillation.

µe f f = µ(1+KRe) (11)

K is a constant, about 0.02. The Reynolds number,Re, is cal-
culated based on the instantaneous bubble radius and velocity.
The effect of increasing the viscosity has a small impact on the
damping of the bubble (figure 3); note, when considered inde-
pendently there is no heat transfer in the bubble, so this imple-
mentation only models the increased viscous damping.

Li et al [10] identified that Ziolkowski’s [17] model (essentially
Gilmore’s model withk equal to 1.13) results in an equilibrium
temperature well below that of the surrounding water. The in-
clusion of heat transfer in the model results in more realistic
predictions of equilibrium temperatures. Laws et al. [9] give
the thickness of the thermal boundary layer as:

d = 4DRe−
3
4 Pr−

1
2 (12)

whereD is the bubble diameter andPr is the Prandtl number.
The rate of heat conduction across this layer is:

Q̇= ∆TA
κ
d

(13)

where∆T is the difference in temperature across the bubble
wall, A is the surface area of the bubble andκ is the thermal con-
ductivity of the interface. Ni et al [11] studied a range ofκ/d
values from 2000 – 8000 W/m2K and found correspondance
with specific experimental data for a value of 4000 W/m2K.
Herring [6] states that the flow of heat outward is a function of
the thermal conductivity of the gas. The thermal boundary layer
will extend across the bubble interface, complicating the value
of the thermal conductivity. Here, values forκ of 0.6 W/mK
for water and 0.024 W/mK for air have been considered;d is
updated through the calculations but is in the order of 100 µm.
Due to turbulence, the area across which heat is conducted may
be magnified — Laws et al. [9] used a factor of 10; however,

in this example, the actual surface area is used. Modelling heat
transfer lessens the drop in temperature as the bubble expands,
allowing the bubble to reach a greater maximum radius. The
temperature is also increased during collpase, which increases
the pressure, arresting the collapse at a larger minimum radius.
The magnitude of the following oscillations is likewise dimin-
ished (figure 3). The bubble temperature is shown in figure 4.

In place of classical heat transfer, Ziolkowski [18] proposed
that the heat transfer takes place through latent heat released
by evaporation and condensation at the bubble wall. Fujikawa
and Akamatsu [4] produced a detailed mathematical formula-
tion to consider these effects. Simpler models have been used
by Laws et al. [9] and Cook et al. [1]. The vapour mass transfer
is:
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whereαM is the ratio of vapour molecules sticking to the phase
interface and those impinging on it, about 0.04 [4],A is the
surface area of the bubble,p∗v is the equilibrium vapour pressure
[4] and Tw is the temperature of the water.Γ is a correction
factor, assumed to be 1 for these calculations. The heat flow
due to the vapour mass transfer is given by:

Q̇= ṁvL (15)

whereL is the latent heat of vaporization, taken as 2.45 J/kg.
The impact on the bubble wall dynamics due to movement of
the bubble wall as a result of mass flow has been ignored, as
the additional terms are assumed negligible [1]. Only the effect
on bubble temperature and pressure has been considered. Mod-
elling the mass transfer due to evaporation and condensation has
a small impact on the maximum radius and period of the bub-
ble pulses (figure 3). The effect on the bubble temperature is
also small (figure 4) and there is no appreciable difference to
the final bubble temperature. Figure 5 presents the results of
including all additional factors discussed here. Solutions have
been calculated for both proposed limits ofκ. Increasing the
surface area in equation (13) would further increase the bubble
period and damping.
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Figure 4: Effect on bubble temperature of including conductive
heat transfer and heat transfer through latent heat.
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Figure 5: Combined effect on bubble radius of including all
additional factors.

Conclusion

Various models have been studied that could account for dif-
ferences in airgun bubble dynamics between theoretical predic-
tions and experimental observations. From the above study, the
most likely primary cause of additional damping to the seismic
airgun bubble is heat transfer between the water and the air.
This is potentially enhanced by an increase in bubble surface
area due to turbulent motion near the bubble wall. Initial mass
throttling as the air is released impacts the first maximum radius
of the bubble significantly. The scale model parameters used in
these numerical predictions may result in different emphasis on
some factors when compared to predictions for a full scale air-
gun; these parameters have been chosen for comparison with
experimental results. Further study will determine how the ad-
ditional damping factors change with dimensional and pressure
scaling.
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